The Gauss-lucas Theorem and Jensen Polynomials
نویسنده
چکیده
A characterization is given of the sequences {"fyj^o vvith the property that, for any complex polynomial/(z) = 1akzk and convex region Kcontaining the origin and the zeros of/, the zeros of 2 y¡ 0 for all n, k.
منابع مشابه
Variational Analysis of the Abscissa Mapping for Polynomials via the Gauss-Lucas Theorem
Consider the linear space n of polynomials of degree n or less over the complex field. The abscissa mapping on n is the mapping that takes a polynomial to the maximum real part of its roots. This mapping plays a key role in the study of stability properties for linear systems. Burke and Overton have shown that the abscissa mapping is everywhere subdifferentially regular in the sense of Clarke o...
متن کاملGeneralized Binet Formulas, Lucas Polynomials, and Cyclic Constants
Generalizations of Binet’s theorem are used to produce generalized Pell sequences from two families of silver means. These Pell sequences are also generated from the family of Fibonacci polynomials. A family of Pell-Lucas sequences are also generated from the family of Lucas polynomials and from another generalization of Binet’s formula. A periodic set of cyclic constants are generated from the...
متن کاملInequalities for Entire Functions of Exponential Type
This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theore...
متن کاملOn the Zeros of a Polynomial and Its Derivatives
If p(z) is univariate polynomial with complex coefficients having all its zeros inside the closed unit disk, then the Gauss-Lucas theorem states that all zeros of p′(z) lie in the same disk. We study the following question: what is the maximum distance from the arithmetic mean of all zeros of p(z) to a nearest zero of p′(z)? We obtain bounds for this distance depending on degree. We also show t...
متن کاملVariational analysis of functions of the roots of polynomials
The Gauss-Lucas Theorem on the roots of polynomials nicely simplifies the computation of the subderivative and regular subdifferential of the abscissa mapping on polynomials (the maximum of the real parts of the roots). This paper extends this approach to more general functions of the roots. By combining the Gauss-Lucas methodology with an analysis of the splitting behavior of the roots, we obt...
متن کامل